Object-Centric Spatial Pooling for Image Classification

نویسندگان

  • Olga Russakovsky
  • Yuanqing Lin
  • Kai Yu
  • Li Fei-Fei
چکیده

Spatial pyramid matching (SPM) based pooling has been the dominant choice for state-of-art image classification systems. In contrast, we propose a novel object-centric spatial pooling (OCP) approach, following the intuition that knowing the location of the object of interest can be useful for image classification. OCP consists of two steps: (1) inferring the location of the objects, and (2) using the location information to pool foreground and background features separately to form the image-level representation. Step (1) is particularly challenging in a typical classification setting where precise object location annotations are not available during training. To address this challenge, we propose a framework that learns object detectors using only image-level class labels, or so-called weak labels. We validate our approach on the challenging PASCAL07 dataset. Our learned detectors are comparable in accuracy with stateof-the-art weakly supervised detection methods. More importantly, the resulting OCP approach significantly outperforms SPM-based pooling in image classification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images

As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...

متن کامل

A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images

Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...

متن کامل

Micro-classification of orchards and agricultural croplands by applying object based image analysis and fuzzy algorithms for estimating the area under cultivation

Remote sensing technology is one of the most efficient and innovative technologies for agricultural land use/cover mapping. In this regard, the object-based Image Analysis (OBIA) is known as a new method of satellite image processing which integrates spatial and spectral information for satellite image process. This approach make use of spectral, environmental, physical and geometrical characte...

متن کامل

Improving Temporal Coherence of Image Features by Clustering Technique Learned from Moving Images

Object recognition is difficult because the appearance of an object changes in many different ways. To recognize objects robustly, one needs representations that are constant despite those changes. Such invariant representations can be obtained by features with low sensitivity to various visual transformations. Spatial pooling is a widely used technique for extracting invariant features from im...

متن کامل

Multiple spatial pooling for visual object recognition

Global spatial structure is an important factor for visual object recognition but has not attracted sufficient attention in recent studies. Especially, the problems of features' ambiguity and sensitivity to location change in the image space are not yet well solved. In this paper, we propose multiple spatial pooling (MSP) to address these problems. MSP models global spatial structure with multi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012